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1 Introduction

The eye-brain system achieves three-dimensional depth perception by taking
advantage of two separate and distinct images captured by each eye. The
image of an object projects on the eye’s retina. The image of the left eye
will differ from that of the right. This is called retinal disparity [1]. The’
brain fuses the two images and interprets the disparity into distances of the
object from the eyes. These binocular cues produce perception of depth not
available with monocular vision. The speed with which the human brain can
integrate the continuous sensor information streaming from the optic nerve
dwarfs the capabilities of current computing hardware.

Computational stereo describes the process of synthesizing the mechanics
of the binocular vision. Stereo pairs obtained from digital imaging are com-
pared to extract three-dimensional characteristics of a photographed scene.
The mathematics involve only trignometry; however, the number of transfor-
mations for high resolution images becomes staggering. For this technique
to receive more attention, the solution algorithms must execute quickly and
efficiently. Parallel computing offers the greatest hope of mimicking the feats
of the brain.

Basically, a stereo camera pair is used to take pictures of a scene where
range information is required. Because of binocular parallax, these cameras
(referred to as the left and right cameras) will acquire slightly different images
of the scene since they are at different locations. This effect can be seen in
Figure 1. The camera origins are aligned along the y and z axes and are
only displayed along the z axis. I and Ig are the left and right images of
the stereo camera pair. The point P is in the three-dimensional scene and is
projected onto the left and right camera photosensitive plates at Pr and Ppg,
respectively. Fy, and Fr represent the focal points of the camera systems. The
disparity is the difference in the locations of P, and Pr on the photosensitive
plates, which results from the cameras being in different horizontal locations.
This disparity and the projection lines are used to determine P’s position in
the world.

For example, a point very distant from the cameras will appear to be at
the same vertical and horizontal position on monitors connected to the left
and right cameras. However, a point close to the camera pair will not be in
the same position on the two monitors. Instead, the point on the left monitor
will be displaced (disparity) to the right from the point on the right monitor.
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a3
Figure 1: Stereo imaging camera system.

One can see this phenomenon in Figure 2. Notice that points distant in
the picture are at roughly the same location in both left and right images.
However, points close to the camera, such as the white spot on the highway,
have a much greater disparity in the two images.

Once the matching points are found in an image, an inverse perspective
transform or simple triangulation can be used to derive the two lines where
the projection of the world point strikes the photosensitive plate of the cam-
era. When these lines are intersected, the three-dimensional characteristics
of the scene can be recovered [2].

The ability to properly match stereo camera pair images is important
to any application in which distance or range information must be extracted
from an image. One such application is plotting terrain contours from images
shot by camera pairs mounted on helicopters. Once the images are matched, a
contour plot is created of the terrain, which shows elevations and depressions
by computing how far away the ground points are from the cameras. The
computer vision and robotics fields use this technique to allow machines, both
moving and stationary, to compute information about their environments
[3]. This technique should also find favor with the military since it does not
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Figure 2: Disparity indicates distance in the scene.

employ active sensing devices. Active devices, such as radar and lasers, are
easily detected and hinder stealth operations.

The algorithm described in this paper is stochastic. It is an undirected
Monte Carlo search through the image space which produces a very fine, glob-
ally optimized disparity map where every pixel in one image is matched with
its corresponding pixel in the stereo pair. Just as with other Monte Carlo
algorithms, this approach requires a significant number of floating point oper-
ations. However, the process of matching pixels typically requires only local
interactions. On the computer, this translates into local references to mem-
ory. Furthermore, the amount of processing for each pixel remains uniform.
These two properties, locality of memory reference and uniform computa-
tional loading, make the algorithm appear ideal for parallel processing. A
perfectly parallel algorithm should exhibit a linear speedup as a function
of the number of processors employed. This simple measure will serve as




a benchmark for measuring the level of parallelization in the application of
stereo imaging.

The paper has two goals. The first is to present a method for performing
stereo image matching and describe how it was modified to exploit paral-
lelization. The second goal is to discuss the timing behavior of the algorithm
in sequential versus parallel modes to include a comparison of different com-
puter architectures. The sequential and parallel versions of the algorithm
along with actual timing results are discussed in more detail in later sec-
tions.

2 Image Matching

Stereo matching requires global optimization. Since the digital image data
maps pixel intensities to a relatively low resolution (typically eight bits, im-
plying 256 discrete levels), there are many possible matches in the local sense.
That is to say, swatches of one image may appear to map other portions of
the stereo pair. To perform stereoscopic ranging, the whole image must be
taken into account. Hence, the requirement for global optimization.

The most popular optimization technique to locate a global optimum 1s
called simulated annealing [4]. As the name implies, the approach imitates
a natural process. Annealing involves heating a solid to the extent that
the molecules may randomly rearrange themselves and then cool gradually.
Slowly lowering the temperature allows the molecules to settle into the lowest
energy state, commonly described as thermal equilibrium. If the temperature
rate declines too fast, defects may become frozen into the end state. If ther-
mal equilibrium is maintained throughout the cooling cycle, the final system
should be a globally optimized structure. For example, perfect crystals are
grown in this manner.

Basically, the simulated annealing algorithm mimics the physical process
via an undirected Monte Carlo search through the image space. This pro-
cedure, known as the Metropolis algorithm, samples states in a system at
equilibrium. Since the system is kept in thermal equilibrium, its states have
a Boltzman distribution

P(E) = exp[+] (1)
in which E is energy, T is the temperature of the system, and P(E) is the
probability of a state having energy E. Random, local state transitions are
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read Ig, I,
D(row, col) = random number in [0...Dpas)
T =Tner
/* loop according to fixed annealing schedule */
while T > Tinin
iterate a fix number of times
S’ <= random state change S
AE = E(S') - E(S)
/* accept lower energy states */
if AE <0Qthen S=5
else
P = exp [=£E
j = random number in [0...1]
/* accept higher energy only with Boltzman probability */
ifj< Pthen S=9
reduce T by predefined percentage
end while

Figure 3: Simulated annealing algorithm in pseudo-code.

performed by varying the disparity only slightly. The change in energy that
would result from the new disparity is determined. If the new state takes
the system to a lower energy level, it is accepted. If the new state takes
the system to a higher energy level, the new state is accepted only with
probability P = exp [=4E].

The simulated annealing technique is outlined in Figure 3. The system
is taken to equilibrium by the Metropolis algorithm by considering random,
local state transitions on the basis of the change in energy that they imply.
Since the system is stochastic, these local state changes can take the system
away from convergence as well as toward it. This helps to prevent the system
from sinking into local minima. The processing is complete when the system
is in equilibrium at the lowest energy state achievable.

The rate of temperature reduction during annealing is determined based
upon the changes in energy that occur. In the original algorithm, energy dis-
tributions are constantly monitored to determine when equilibrium is reached




and temperature should be lowered. Enough iterations of the algorithm
should be performed at each temperature to bring the system to thermal
equilibrium. Temperature should only be lowered once there is no longer
any significant decrease in energy. In this version, a fixed annealing schedule
is used to limit global accumulators and synchronization that would disrupt
parallelization. Fixed annealing schedules have been shown to be effective for
these problems. Furthermore, global accumulators are not required since op-
timizing local energies has the same overall effect as optimizing global energy
without loss of correctness [5].

Several parameters must be set when using simulated annealing with fixed
cooling schedules. The first value that must be determined is the starting
temperature. The initial value of T must be chosen in such a way that
virtually all transitions are accepted. This means that exp [=$£] ~ 1. for all
points on the lattice. A general procedure for picking the initial value of T
is as follows. Start with a high value and perform a number of iterations. If
the acceptance ratio, which is the number of transitions accepted divided by
the number of transitions proposed, is less than a certain cutoff value, double
the value of Tp. An acceptance ratio of 0.8 is frequently used [4].

Determining the appropriate number of state transitions needed at each
temperature represents an important consideration for accurate simulations.
This value is highly dependent on the size of the problem space. For example,
stereo matching an image for which the maximum disparity is 20 will require
more iterations than stereo matching an image that has a maximum disparity
of 10. Several techniques have been proposed to help determine this number.
One widely employed rule is that the average number of iterations of the
algorithm for each temperature should be roughly equal to that of the number
of variables of the problem being solved [4]. More experimental results may
be used by monitoring the number of iterations required to bring the system
to thermal equilibrium for the given temperature [3].

Another concern involves decreasing the control variable T. Only small
decrements to T should be allowed to make sure the system can re-adjust to
equilibrium based on the number of iterations that are to be employed for
each value of T'. A frequently used rule is

Tk+1 =Q‘Tk, k=0,1,2 (2)

in which « is a constant smaller than but close to 1 [4].



The last major concern is when to terminate the algorithm. The algo-
rithm may be terminated when the state space of the problem no longer
fluctuates. Such a point usually arrives when the value of T is sufficiently
low and exp [=4E] ~ 0.

For this implementation, a similar cooling schedule as described by
Barnard was used [5]. Temperature is initially 100 which easily allowed for
transition occurrences of greater than 80%. Ten passes through the problem
space were performed for each temperature. This value is very close to the
maximum disparity of 8 for each test case. Temperature was decreased by
10% after the 10 loop passes. This uses the decrement rule with an « value
of 0.9. The algorithm is terminated when T' drops below 1.

Annealing may be simulated in any problem requiring a globally opti-
mized solution. The process is most useful in problems that are very complex,
have high degrees of interaction between the elements, and do not have abso-
lute solution spaces. Stereo matching fits all these criteria. Since every point
must be matched, the process must match anywhere from roughly 16,000
to 260,000 points (image sizes usually range from 128 x 128 to 512 x 512).
Matching one point requires analyzing how its neighbor point matched, and
how that neighbor’s neighbor matched, and so forth. Furthermore, there are
often areas of occlusion or wide areas of homogeneous intensity in the images
that do not allow for precise matching. As one can see, the problem quickly
becomes one of optimizing over a broad spectrum of possibilities.

To use simulated annealing, one must model the problem as an analog
to an actual physical system. This will enable the algorithm to determine
when one state is closer to being optimized than another state. A function
is constructed which analyzes the current state of the process and assigns
a scalar value to it. This function is known as the energy function for the
system. Simulated annealing attempts to find a global state that has a
minimum energy.

The function used in this case has two sources of energy contribution [6].
For the image-matching problem, the associated energy at each pixel is

E(r,¢) =| I(r,¢) = Ir(r,c + D(r,c)) | +2 | VD(r,¢) | (3)

in which I, and IR represent the brightness at row r and column ¢ of the
left and right images, respectively; D is the disparity; VD is the sum of the
absolute differences between D and its eight nearest neighbors; and X is a
weighting factor.




The first term in the equation is known as the brightness constraint. It
basically states that matching points, or pixels, on the left and right images
should be of approximately the same intensity value. For example, if the left
and right images are digitized into eight bit gray scale brightnesses, a pixel
on the left image with a brightness value 68 should be matched to a pixel
on the right image with approximately the same value. Identical cameras
and settings should be used to limit variations in brightness, contrast, and
so forth.

The second term is sometimes referred to as the smoothness constraint.
It asserts that the horizontal shift of an element should be the same as that of
its neighbors. This smoothness condition is necessary since the first contraint
is strictly local, and stereo correspondences are locally ambiguous. In other
words, without this constraint, surfaces would not be spatially coherent.

For example, suppose the left and right images are composed of solid
black backgrounds with a white square 50 x 50 pixels roughly in the center
of the image. The square in the left image has a disparity value of 5 (all
points in the square have been shifted 5 places to the right). If only the
brightness constraint were used, a point directly inside the left edge of the
square could have a disparity value of anywhere from 0 to ~~ 50 since its
brightness matches all other pixels in the square. However, because of the
smoothness constraint, the left and right edge disparity value of 5 will be
propagated to the rest of the interior of the square.

3 Parallelism

It is the rule, rather than the exception, that algorithms have some aspect
that can benefit from parallelism and thus decrease overall computation time.
Because only local interactions are considered between points on the image
lattices, the Metropolis algorithm can benefit greatly from parallelism.

As one searches for the most efficient way to exploit parallelism, a key
point to keep in mind is the structure of the data in the problem. This
algorithm’s fundamental parallelism is one of a result-based nature. Ideally,
one processor for each point on the disparity map would be active. Each
processor would be responsible for computing its assigned pixel’s disparity
and that disparity alone. This is a dynamic, 2-D data structure; trapped
inside each array element is a process that computes D(r,c) for each pixel.



At the conclusion of the algorithm, the processes would vanish and leave a
resultant disparity for the (r,c) in question.

Result-based computations perform very well on finely-grained architec-
tures. These are computers with many processors that are governed by one
master processor. An example of this type of architecture is available on
the CM-2 computer, a connection machine built by Thinking Machines, Inc.,
having 64,936 simple one bit processors [7]. Each processor in this model
would run the same algorithm but on differing data sets. The processors
would be assigned a group of pixels on which to work. All processors would
perform in lock-step governed by a master process. Since the disparity map
is only updated after all points have been analyzed, each processor can work
independently of its neighbor. However, finely grained architectures are not
very common and good speedup can still be achieved by switching to an
agenda-based parallelism using a master-worker program [8].

Agenda parallelism is very suitable for the more common coarsely-grained
architectures. These are architectures that typically use shared memory and
usually have fewer processors than fine grain machines. A master-worker type
of agenda parallelism is used in this instance. In this computational stereo
algorithm, a master process starts a series of workers to perform the image-
matching task. Basically, each worker executes the code described by the
text and flowchart in the previous section of this paper. All workers execute
the same code; the only difference is which part of the image the workers
get. This is also often referred to as SIMD (single instruction, multiple data)
computing. Each processor runs the same program in this model. Each
processor, however, works only on its own data set.

It was initially planned to split the N x N image into blocks of size m x m
where m = (N/numberworkers). For example, if the image were of size
128 x 128 and we wanted to use four workers, each worker would get a block
of the image of size 64 x 64. This would have created overhead, since each
worker would have had to communicate disparity information along its edge
to its neighboring workers. Instead, since there is almost no vertical disparity
in the image, the workers each get a block of the image of size m x N. With the
128 x 128 and four workers example, each worker would get a block of size 32 x
128. Each worker can now compute without synchronization problems since
vertical disparity does not need to be broadcast and received. Since the array
blocks are homogeneous, a static scheduling method is used. Each processor
gets one contiguous block of the overall image. No interleaving of data nor
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dynamic scheduling would be warranted with this data set. Relatively good
speedup should be achievable since there is no interprocess communication.

4 Implementation

Two different coding environments and architectures were used for running
the sequential and parallel versions of the simulated annealing algorithm.
The same sequential code was run on both architectures and it was written
in C. This code is listed in Appendix A.

4.1 Networked Sun IPCs and C-Linda

The first environment was a distributed network of Sun workstations using
IPC processors operating at 25 MHz. The parallel algorithm was written
in C-Linda [8]. This code development environment is a superset of the C
language with special functionally added to support Linda operations in a
distributed programming environment. The Linda environment allows ma-
chines on local or wide area networks to spawn processes on other machines
and also allows these processes to communicate data. Appendix B lists the
code for C-Linda.

Linda uses a memory model called tuple space. Since each computer on
the network is distinct, they do not share a common memory area. Tuple
space allows for a virtual shared memory area between computers that may
contain both active and passive tuples. The eval statement is used to start
active tuples. These active tuples will start parallel processes on the comput-
ers on the network. At run time, the user specifies the number of computers
that should be employed to work on the specific problem. A list of avail-
able computers with Linda installed is kept in local files on each computer.
Linda will then ask the computers listed in the valid file to assist. If enough
computers are available, the code will execute. When an eval statement is
executed, Linda will spawn the process to a cooperating computer. Linda
will attempt some load balancing. The operating system will not allow one
computer in the link to receive and process all the eval statements.

Data tuples are created and consumed by the statements out and in,
respectively. Pattern matching is employed for these operations, which uses
both formals and actuals. Formals are variables that become instantiated and
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are matched according to variable type. The statement out (1, "test") will
create a 2-D tuple in tuple space. It consists of two actuals. The statement
in(? i, ? text) consists of two formals and will consume the data and
give i the value 1 and text the string "test". This is only true if iisa
variable of type integer and text is an array of characters.

Semaphores are available in Linda to prevent deadlock and race conditions
which may occur in certain in and out data space operations. If a process

is waiting to consume tuples and none are available, it will block.
The following listing shows a small code section of Linda tuple space
operations.

main {
eval(Compute(1))
out(1, 2) /* adds (1, 2) tuple to tuple space */
/* in may block if no matching tuples are available */
in(1, ?result) /* consumes (1, 3) tuple, result = 3 */
}

Compute(i) { /* i = 1 %/
in(i, 7data) /* consumes (1, 2) tuple, data = 2 */
out(i, ++data) /* out (1, 3) tuple */
}

4.2 Sun 2000 with Solaris Threads

The second architecture used was a Sun 2000 having eight processors operat-
ing at 50 MHz each. The operating system for this computer was Sun OS 5.3
having Solaris threads which allows for multiple processes in a shared mem-
ory environment. The code for this implementation is listed in Appendix
C. Fach thread can operate independently and asynchronously. Basically,
a thread is a single sequence of steps performed by one or more programs.
A thread runs through a program, and there is only one point of execution
in a thread at any instant [9]. The new threads are created by a C library
call and are dispatched to the processors in the computer by the operating
system. - ' - o
The system call to create new threads requires a function to be specified
to which the new thread will branch. Any number of threads may be created,
but it is generally inefficient to create more threads than processors. Doing
so will cause one or more processors to run the remaining threads which
will correspondingly result in their performance degradation. Parallelizing
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the code required source level modifications of the sequential code by adding
new procedure calls and library loads during linking. Appendix C lists the
code for the program using threads.

5 Measurements

The stereo matching algorithm was tested with several computer-generated
random dot stereograms. These stereograms represent synthetic three-
dimensional objects. The side of the object facing the camera system is
texture mapped with solid black. The solid black is then speckled with ran-
domly placed white pixels. Figure 4 shows the four-tiered “wedding cake”
structure used for testing this algorithm.

Figure 4: Three-dimensional wedding cake structure.

The number of white dots is limited to 10% of the total image to test
the robustness of the algorithm. The right image is assigned the random
dot stereomap. Since the object is tiered, a stereo camera system above and
facing the object perceives the dots to be at different locations in the right
and left images. This effect is simulated by creating the left image of the
stereo pair by shifting pixels in the right image to the right. Pixels around
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the outer edge were not offset, the next level in was offset by 2 pixels, the
next level 4 pixels, and the center was offset by 6 pixels. Pixels with high
movement represent areas that would be close to a camera looking down from
above the wedding cake whereas pixels with no disparity would be distant
from the camera. Figure 5 shows the random dot stereo pair.

Figure 5: Random dot stereogram. The left image is formed by displacing
points in the right image.

Because of the well-defined disparity maps, these random dot images
represent ideal cases for evaluating stereo matching algorithms. That is, we
know how the result should look, whereas in a real-world image, there would
be some doubt as to what an exact map should look like. There are still
some areas of ambiguity such as sections devoid of white pixels; however, the
overall structure of the map remains clear. Image sizes of 128 x128, 256 x 256,
and 512 x 512 were used. These sizes were used since most frame grabbers
and digitizers, as well as some image-processing routines, historically use
image sizes of 2".

The primary goal of parallelization is to achieve speedup. Several mea-
surement techniques are used to judge algorithm parallelization and archi-
tectural efficiency. The first metric is speedup. In an ideal environment, n
processors working on a problem should be able to solve it n times faster.
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This ideal is rarely achieved. The actual speedup achieved is defined as

T,
S = (4)
P

in which T; is the linear (one processor) completion time for the algorithm
and T}, is the parallel completion time using p processors. The second metric
used is efficiency. Efficiency is defined as

T,
= ) 5
p-Tp )

E,

This number indicates the overall efficiency of the p processors working on the
problem. Ideally, this number should be as close to 100% as possible but will
suffer because of conditions of load imbalancing, communication costs, and
various other parallelization overheads. As an example of these two metrics,
consider an algorithm A that takes 45 time units to run and a parallelized
version of A with 4 processors that takes 16 time units to run. The above
metrics for this situation equate to

45 45
Sy = TG =281, E, = ™ = 0.70
or a speedup of 2.81 and a processor efficiency rating of 70%.

Figure 6 shows both the sequential and parallel results from matching the
random dot stereogram shown in Figure 5. These results are from the Sun
2000 but are representative of a solution from any architecture. The parallel
result was generated using four processors. The disparity maps produced
by the algorithm, which are actually two-dimensional arrays with integer
disparity values, are encoded as gray scale values for visual representation.
Pixels with higher disparity values are closer in stereo (i.e., at the top of the
structure) and are displayed as brighter shades of gray. Since the algorithm
is non-deterministic and employs random number generators, some small
differences can be seen in the resultant images. The three hard horizontal
edges in the parallel result case stems from the fact that the edge falls directly
on a processor’s border.

The three-dimensional representation of the disparity map is shown in
Figure 7. Notice that the stereo matching algorithm has very closely recov-
ered the wedding cake structure shown in Figure 4.

14




Figure 6: Stereo matching results. (Disparity maps are encoded as gray
scale values. The left image was generated sequentially, the right image in
parallel.)

6 Analysis and Interpretation

All times are based on averages of approximately five trials per case. Figure
8 shows the sequential time that the algorithm took on both the Sun IPC
and 2000 machines.

As expected, because of faster processor speeds, the 2000 outperformed
the IPC by about a factor of 4 in all cases. It can also be seen that the curve
in both cases follows the same shape and that the time it takes to complete
the algorithm grows proportionally with problem size.

The next charts (Figures 9 and 10) show the time the algorithm took for
multiprocessors in both hardware environments.

Eight workers (or threads) maximum were used for the Sun 2000 since
eight processors were installed on the test machine and 16 workers were used
for the IPC network since 16 workstations could easily be acquired. From
the shape of the bars, one can see that there are no anomalies in the graph.
In all cases, as expected, the more processors working on the image-matching
problem produced smaller computation times.

15




Figure 7: Three-dimensional representation of a four-level random dot stere-
ogram.
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Figure 8: Sequential time on Sun IPCs and Sun 2000.

Figures 11 and 12 show the speedup achieved on the IPC network. Notice
that the speedup per the number of processors is almost the same regardless
of the image size on which the matching was performed. For example, the
speedup for two processors is almost the same for the 128 x 128, 256 x 256,
and 512 x 512 images. Image size does not seem to play a major role in
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Figure 10: Threads performance on Sun 2000.

defining speedup. The case at 256 x 256 with 16 processors is an outlier, but
this would undoubtedly have stabilized with more testing.

Speedup is achieved in all cases but does not quite reach its theoretical
maximum in any case. Notice in Figure 12 that the speedup moves farther
away from the line representing ideal speedup in the case of more processors.
After some testing, it was determined that the operations to start workers on
distributed machines, the master outing data to these machines, and these
machines consuming the data, were very time-inexpensive operations. For
example, in a typical case with the maximum number of workers (16), it only
took roughly 0.2 second to start all 16 workers. The master outing data and
workers consuming it usually only took about 2 seconds in these cases.
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Figure 11: Speedup achieved using C-Linda on Sun IPC network.
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Figure 12: Speedup using C-Linda plotted against ideal linear speedup.

However, time varied greatly in the amount of time it took the workers
to complete. In the 16-worker example, the time interval from when the first
worker completed to when the last worker completed was anywhere from
30 to almost 50 seconds. In the 256 x 256 image size case, if all workers
completed at the time the first worker finished, this would reduce the time
by close to 40 seconds and increase speedup to almost 15. This is also why
the speedup is moving away from the ideal speedup line on the graph. It
only takes one slow worker to slow speedup and with more workers on the
problem, a “weak link” is more likely. Speedup is very dependent on load
averages for the machines working on the problem.
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The efficiency for the IPC network is shown in Figure 13. The data in
this chart is not as orderly, and there does not appear to be any emerging
pattern. The efficiency is in the range from = 0.65 to 0.8 for all cases.
Eight processors seem to be the most efficient for all image sizes. The wide
variations in the graph are attributable to the wide ranges of computational
loads on the machines in the network. With the 256 x 256 image, 16-worker
example as stated previously, if all processors finished as quickly as the first,
the efficiency would be close to 95%. This graph is very dependent on the
“weak” processor as well.

0.95; M2 B4 Be [1e

o
A

Efficiency

128x128 256x256 512x512
Image Size

Figure 13: Efficiency of Sun IPC network.

Speedup achieved using threads on the Sun 2000 computer is shown in
Figures 14 and 15. Just as with the Sun IPCs, it can be seen that speedup
grows relatively consistently. In this case as well, image size does not seem
to play a major role in influencing speedup. The speedup for two processors
is roughly the same for the 128 x 128, 256 x 256, and 512 x 512 image size
cases.

The speedup for two and four processors is good. The speedup for eight
processors is much less than expected. The efficiency of the processors is also
very good for the two and four processor (threads) cases. This can be seen
in Figure 16.

The efficiency drops quickly and uniformly as more processors are used
and is quite poor for the eight processor case. Just as with the IPCs, there
were large gaps in the time interval it took for threads to complete. For
example, in the 256 x 256 image case with eight workers, the average time
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Figure 15: Speedup using threads plotted against ideal linear speedup.

interval between when the first thread completed to when the last thread
completed was approximately 17 seconds. Adjusting for this delay, if all
threads completed as early as the first one did, speedup would increase to
6.5 and efficiency would be close to 81%.

There are a few possible explanations for this poor performance with
threads. The first reason is machine load. The Sun 2000 used routinely had
load averages of 5.0 to 10.0 with an average of 60 to 80 users when the test
cases were computed. The speedup will decrease as more of the machine’s
resources are tapped so the efficiency will be higher in the two-processor case
than the eight-processor case.
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Figure 16: Efficiency of threads on Sun 2000.

Another issue that could not be fully resolved was whether all eight
threads that were created were actually mapped to eight different processors.
One processor sharing threads will slow the speedup dramatically. During
some of the testing, 16 threads were created. In this case, two threads should
have been mapped to each processor. When the speedup was computed, it
was identical to the eight thread case with an efficiency of roughly 30%. If
the threads could not be scheduled on separate processors, this would also
account for the poor speedup and poor efficiency with eight threads.

One other concern in a shared memory environment like this one is sub-
page thrashing. If two or more threads are trying to write to the same page or
sub page, some operating system coordination and overhead are introduced.
The 2-D arrays used to store the image gray scale values varied in size and
there was no way to ensure that the arrays were subpage aligned. This seems
to be part of the problem and explains why there are slower times with more
processors. Four processors trying for the same subpage will generate more
overhead than two processors also competing for the page.

7 Conclusions

Simulated annealing offers an attractive method to solve large combinatorial
problems. It is conceptually simple and relatively easy to implement. Once
a proper energy function or heuristic is defined for the system, simulated
annealing can become an effective solution technique in many problem areas.
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Its one main drawback is completion time since so many iterations must
be performed to take the system to its lowest energy configurations. This
time can be substantially reduced by using parallel computers and taking
advantage of the parallel nature of the image-matching algorithm.

Several conclusions may be drawn regarding the parallel architectures
that were used for this algorithm. For limited numbers of processors, the Sun
2000 achieves greater speedup and is more efficient that the IPC network.
If this algorithm were to use inter-process communications, the 2000 would
probably be much more efficient. For the two and four processor case, the
shared memory of the Sun 2000 outperforms the IPC network for all image
sizes with very high efficiency (higher than 80% in all cases). The IPC
network with C Linda start to show better speedup factors and much better
efficiency than shared memory threads in cases when more processors are
used and would probably start to outperform (in time required for algorithm
completion) the faster Sun 2000 with some extension to the graph. For
example, in all image size cases, the time 16 IPC processors took was very
close to the time the eight processor Sun 2000 took to perform the stereo
match. The shared environment of threads requires more operating system
coordination to which the IPC network is immune. This is readily visible by
comparing the efficiency bar graphs.

The amount of speedup achievable in the IPC network was good but was
slightly lower than was expected. The deviation is understandable, however,
since one slow worker will cause movement away from ideal speedup. It is
usually the case that at least one non-dedicated machine on a network will
have a high load average. The efficiency was good, however, across most
cases with the majority of readings above 70%.

The threads environment on the Sun 2000 was more of a disappointment
and will require more research into which of the factors mentioned previously
are degrading performance. Except for the two and four processor case, the
speedup achieved was poor with only a factor of five speedup with eight
processors and an efficiency of less than 64%. More advanced techniques
will have to be employed to determine how load averages and page thrashing
played a role in this disappointing performance.

In terms of cost versus performance ratios, the network of Sun IPCs
was quite high. A network of these low-cost machines began to perform
comparable to the more expensive Sun 2000 in cases of large problem sizes.
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A Linear Stereo Matching Algorithm

/*
Stereo matching algorithm based on simulated annealing.

Concept attributable to Stephen Barnard, "A Stochastic Approach to
Stereo Vision" Readings in Computer Vision, Addison-Wesley, New York,
1987

Author: Dale R. Shires

Revision Date: 5/19/94

Notes:

See the article for more details on the Monte-Carlo search method.
Limited error checking is employed.

A fixed annealing schedule is currently used. Global accumulators
could also be used on the energy to help determine temperature
reduction.

The procedure uses many defines and reads tvo images, one named
LeftImage#¥# and RightImage®#% where ### is the number of rows used.
This implementation only uses 2°n image sizes and rovs and columns must
be the same.

The program currently does not output the actual disparity values. Rather
it outputs a gray scale map representing these values. The resultant
map name is STERED_RESULTS

*/

#include <math.h>
#include <stdio.h>
#include <sys/time.h>

#define ROWS 512 /# Image height »/

#define COLS 512 /+ Image width »/

#define LAMBDA_IMPORTABCE 5 /* weighting value */

#define D_MAX 8 /% Maximum disparity was 18 s/

#define D_MIN O /+* Minimum disparity »/

#define LEFT_IMAGE 1 /# Left image identifier #/

#define RIGHT_IMAGE 2 /+ Right image identifier »/

#define STOP_COL (COLS - D_MAX) /#* limit disparity s/

#define RANDOM_DISPARITY (rand() % D_MAX)

#define RANDOM_PROBABILITY (rand() % 32767 / 32767.0) /s [0..1] #/
#define STARTING_TEMP 100.0 /# starting temp of the system #/
#define ENDING_TEMP 1.0 /+ stop annealing at this temp »/
#define TEMP_REDUCTION 0.1 /# reduce temp this much after loop »/
#define LATTICE_SCANS 10 /# loop this many times for each temp */
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/* Define types: */

typedef char String255[2561;
typedef unsigned char Pixel;

/% Global arrays */

Pixel leftImage[ROWS][COLS];
Pixel rightImage[ROWS] [COLS];
int disparities[ROWS][COLS];

int tempDisparities[ROWS][COLS];

/+ Read the gray scale values of a digital image stored in ASCII format */

void ReadImageIntensityValues(theImage, which)
Pixel theImage[ROWS] [COLS];

int which;

{

register int rowCounter, colCounter;

register Pixel #*ptr;

String255 fileName;

char pixelValue;

FILE *theFile; -

if (which == LEFT_IMAGE)
sprintf(fileName, "LeftImageid”, ROWS) ;
else

sprintf(fileName, "RightImage¥d", ROWS);

theFile = fopen(fileBame, "r");

if (theFile == NULL)
printf("Could not open file %s\n", fileName);

for (rowCounter = 0; rowCounter < ROWS; rowCounter++)
{

ptr = theImage[rowCounter];

for (colCounter = 0; colCounter < COLS; colCounter++)
{

fscanf(theFile, "%c", &pixelValue);

sptr = (unsigned char)pixelValue;

++ptir;

}

}

fclose(theFile);

} /+ end ReadImagelntensityValues */

/* Generate a new state +- 1 unit from the previous state.

underflow is allowed */
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int RandomNewState(oldState)
register int oldState;

{

register int randomNumber;

if (RANDOM_DISPARITY > ((D_MAX / 2)-1))
randomBumber = -1;

else

randomNumber = 1;

oldState = oldState + randomNumber;

if (oldState < D_MIN)
oldState = D_MIN;

else if (oldState > D_MAX)
oldState = D_MAX;

return(oldState);

} /* end RandomNewState */

/* Randomized the system. The disparity map is initialized in the range
from [D_MIN .. D_MAX] =/

void RandomizeSystem()
{

register int row, col;

for (row = O; row < ROWS; row++)
for (col = 0; col < COLS; col++)
disparities[row][col] = RANDOM_DISPARITY;

} /* end RandomizeSystem »/

/% Dutput the resultant disparity map in a gray-scale format. O indicates
areas on no disparity and 255 indicates areas of maximum disparity.
The disparity range is divided into steps in a 256 brightness range. */

void CreateGrayScaleMap()
{

register int row, col;
FILE #*theFile;
char fileName[250];
theFile = fopen("STEREO_RESULTS", "w");
for (row = 0; row < ROWS; row++)
for (col = 0; col < COLS; col++)
fprintf(theFile, "%c", disparities[row][col] * (255 / D_MAX));

fclose(theFile);

26



} /* end CreateGrayScaleMap */

/* Compute the energy of a pixel based on photometric and disparity
parameters. */

int Energy(row, col, disparity)

int row, col, disparity;

{

register int leftIntensity, rightIntensity;
register int photo;

int del;

del = (abs(disparity - disparities{row-1][col-1]) +
abs(disparity - disparities[row-1][col]) +
abs(disparity - disparities[row-1][col+1]) +
abs(disparity - disparities[row][col-1]) +
abs(disparity - disparities[row][col+1]) +
abs(disparity - disparities[row+1][col-1]) +
abs(disparity - disparities[row+1][col]) +
abs(disparity - disparities[row+1]{col+1]));

leftIntensity = leftImagelrow][coll;
rightIntensity = rightImage[row] [col+disparity];
photo = abs(leftIntensity - rightIntensity);

return(photo + (LAMBDA_IMPORTABCE * del));

} /% end Energy */

/* The following energy functions are similar to the function Energy but
cover the special cases along the boarders where 8 neighbors are not
present. */

int TopEnergy(col, disparity)

int col, disparity;

{

register int leftIntensity, rightIntensity;
register int photo;

int del;

del = (abs(disparity - disparities[0][col-1]) +
abs(disparity - disparities[0][col+1]) +
abs(disparity - disparities[1]{col-1]) +
abs(disparity - disparities[1][col]) +
abs(disparity - disparities[1][col+11));

leftIntensity = leftImage[0][coll;
rightIntensity = rightImage[0][col+disparity];
photo = abs(leftIntensity - rightIntensity);

27




return(photo + (LAMBDA_IMPORTANCE #* del));

} /* end TopEnergy */

int LeftEnergy(row, disparity)

int row, disparity;

{

register int leftIntensity, rightIntensity;
register int photo;

int del;

del = (abs(disparity - disparities[row-1][0]) +
abs(disparity - disparities{row-1][1]) +
abs(disparity - disparities[row][1]) +
abs(disparity - disparities[row+1][0]) +
abs(disparity - disparities[row+1]{11));

leftIntensity = leftImage{rowl[0];
rightIntensity = rightImage[row] [disparity];
photo = abs(leftIntensity - rightIntensity);

return(photo + (LAMBDA_IMPORTANCE # del));

} /» end LeftEnergy */

int BottomEnergy(col, disparity)

int col, disparity;

{

register int leftIntensity, rightIntensity;
register int photo;

int del;

del = (abs(disparity - disparities[ROWS-1]}[col-1]) +
abs(disparity - disparities[ROWS-1][col+1]) +
abs(disparity - disparities[(ROWS-1)-1]{col-1]) +
abs(disparity - disparities[(ROWS-1)-1][coll) +
abs(disparity - disparities[(RONS-1)-1][col+1]));

leftIntensity = leftImage[ROWS-1][col];
rightIntensity = rightImage[ROWS-1][col+disparity];
photo = abs(leftIntensity - rightIntensity);
return(photo + (LAMBDA_IMPORTANCE #* del));

} /» end BottomEnergy */

int TopLeftEnergy(disparity)
int disparity;
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{

register int leftIntensity, rightIntensity;
register int photo;

int del;

del = (abs(disparity - disparities[0][1]) +
abs(disparity - disparities[1][0]) +
abs(disparity - disparities[11{1]));

leftIntensity = leftImage[0] [0];
rightIntensity = rightImage[0][disparity];
photo = abs(leftIntensity - rightIntensity);

return(photo + (LAMBDA_IMPORTANCE # del));

} /* end TopLeftEnergy */

int BottomLeftEnergy(disparity)

int disparity;

{

register int leftIntensity, rightIntensity;
register int photo;

int del;

del = (abs(disparity - disparities[(ROWS-1)-11[0]) +
abs(disparity - disparities[(ROWS-1)-1][1]) +
abs(disparity - disparities[ROWS-1][11));

leftIntensity = leftImage[ROWS-1][0];
rightIntensity = rightImage[ROWS-1][disparity];
photo = abs(leftIntensity - rightIntensity);

return(photo + (LAMBDA_IMPORTANCE * del));

} /» end BottomLeftEnergy */

/* Perform the simulated annealing. */

void Anneal(temperature)

double temperature;

{

register int row, col;

register int deltaEnergy, newEnergy;
register int *tempPtrl, stempPtr2;
int oldEnergy;

int newState;

/* compute top left emergy */

newState = RandomNewState(disparities[0][0]);
oldEnergy = TopLeftEnergy(disparities{0][0]);
newEnergy = TopLeftEnergy(newState);
deltaEnergy = newEnergy - oldEnergy;




if (deltaEnergy <= 0)

tempDisparities[0][0] = newState;

else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/temperature))
tempDisparities[0] [0] = newState;

else

tempDisparities[0] [0] = disparities[0][0];

/* compute top row energy */

for (col = 1; col < STOP_COL; col++)

{

newState = RandomNewState(disparities[0] [coll);
oldEnergy = TopEnergy(col, disparities[0][col]);
newEnergy = TopEnergy(col, newState);
deltaEnergy = newEnergy - oldEnergy;

if (deltaEnergy <= 0)

tempDisparities[0][col] = newState;

else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/temperature))
tempDisparities[0][col] = newState;

else

tempDisparities[0][col] = disparities[0][col];

}

/% compute left column energy */

for (row = 1; row < (RDWS-1)-1; row++)

{

newState = RandomNewState(disparities[row][0]);
0ldEnergy = LeftEnergy(row, disparities[row][0]);
newEnergy = LeftEnergy(row, nevState);
deltaEnergy = newEnergy - oldEnergy;

if (deltaEnergy <= 0)

tempDisparities[row] [0] = newState;

else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/temperature))
tempDisparities[row] [0] = newState;

else

tempDisparities[row] [0] = disparities[row][0];

/% compute bottom left energy */

nevState = RandomNewState(disparities[(ROWS-1)-1][0]);

oldEnergy = BottomLeftEnergy(disparities[(ROWS-1)-11[01);

newEnergy = BottomLeftEnergy(newState);

deltaEnergy = newEnergy - oldEnergy;

if (deltaEnergy <= 0)

tempDisparities [(ROWS-1)-1][0] = newvState;

else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/temperature))
tempDisparities [(RO¥S-1)-1][0] = newState;

else

tempDisparities [(ROWS-1)-1][0] = disparities[(ROWS-1)-1][0];

/* compute bottom row energy */
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for (col
{
newState = RandomNewState(disparities[ROWS-1][coll);

oldEnergy = BottomEnergy(col, disparities[ROWS-1][coll);

nevEnergy = BottomEnergy(col, newState);

deltaEnergy = newEnergy - oldEnergy;

if (deltaEnergy <= 0)

tempDisparities [ROWS-1][col] = newState;

else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/temperature))
tempDisparities[ROWS-1][col] = newState;

else

tempDisparities [ROWS-1] [col] = disparities[ROWS-1][coll;

1; col < STOP_COL; col++)

/% compute main grid energy */

for (row = 1; row < (ROWS-1)-1; row++)

for (col = 1; col < STOP_COL; col++)

{

newState = RandomNewState(disparities[row] [coll);
oldEnergy = Energy(row, col, disparities[row][coll]);
newEnergy = Energy(row, col, newState);
deltaEnergy = newEnergy - oldEnergy;

if (deltaEnergy <= 0) -
tempDisparities[row][col] = newState;

else if (RANDOM_PROBABILITY <
exp((double)-~deltaEnergy/temperature))
tempDisparities[row] [col] = newState;

else

tempDisparities[row] [col] = disparities[row][col];

3

/% copy the temp disparity array into the main disparity array */

for (row = 0; row < ROWS; row++)
{

tempPtrl = disparities[row];
tempPtr2 = tempDisparities[row];
for (col = 0; col < COLS; col++)
{

*tempPtri = *tempPtr2;
++tempPtri;

++tempPtr2;

}

}

} /* end Anneal #*/

void main(argc, argv)
int argc;
char s*argv;

{




double currentTemp;

int scanCounter;

int temp;

struct timeval tpl, tp2;
struct timezone tzpl, tzp2;

printf("Executable = %s\n", argv[0]);
printf("Rows = %d, Cols = %d\n\n", ROWS, COLS);

/* read the left and right images »/

ReadImageIntensityValues(leftImage, LEFT_IMAGE);
ReadImageIntensityValues(rightImage, RIGHT_IMAGE);

/* randomize the disparity map of the system #/
gettimeofday(&tpl, Rtzpl);

RandomizeSystem() ;

currentTemp = STARTIEG_TENMP;

while (currentTemp >= EEDING_TEMP)

{

for (scanCounter = 0; scanCounter < LATTICE_SCANS; scanCounter++)

{
Anneal(currentTemp);
temp = currentTemp;

}

currentTemp == (currentTemp » TEMP_REDUCTION);
}

gettimeofday(2tp2, &tzp2);

printf(“%1d, %1d\n", tpl.tv_sec, tpl.tv_usec);
printf("%1d, %1d\n", tp2.tv_sec, tp2.tv_usec);

CreateGrayScaleMap();

} /* end main */
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B C-Linda Parallel Stereo Matching Algo-
rithm

/*
Parallel stereo matching algorithm based on simulated annealing.

Concept attributable to Stephen Barnard, "A Stochastic Approach to
Stereo Vision" Readins in Computer Vision, Addison-Wesley, New York,
1987

Author: Dale R. Shires
Revision Date: 5/18/94
Notes:

This code has been written for parallel processing with C-Linda.
Appropriate source level annotations to the code have been made.

See the article for more details on the Monte-Carlo search method.
Limited error checking is employed.

The procedure requires two files, one named LeftImage and one
named RightImage to be present in the directory. This implementation
only uses 2°n image sizes and the rows and columns must be the same.

The *program currently does not output the actual disparity values.
Rather, it outputs a gray scale map representing these values.
The resultant map name is STEREO_RESULTS

*/

#include <stdio.h>
#include <sys/time.h>
#include <math.h>

#define ROWS 256 /% the number of rows in the image */

2define COLS 256 /* the number of columns in the image */
#define D_MAX 8 /# maximum horizontal disparity »/

#define D_MIN O /* minimum disparity */

#define LAMBDA 5 /# the lambda weighting factor */

#define WORKERS 16 /* number of workers to use */

#define LEFT_IMAGE_NAME "LeftImage"

#define RIGHT_IMAGE_NAME "RightImage"

#define START_TEMP 100.0 /* starting temp of the system %/
#define END_TEMP 1.0 /# stop annealing at this temp */

#define TEMP_REDUCTION 0.1 /# reduce temp this much after loop */
#define LOOPS 10 /# number of loops per temperature */

#define RANDOM_DISPARITY (rand() % D_MAX)

#define RANDOM_PROBABILITY (rand() % 32767 / 32767.0) /* [0..1] #/
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#define STEPSIZE (ROWS / WORKERS) /# number of rows per worker =/
typedef char String[255];

int RandomNewState(oldState)

int oldState;

{

(RANDOM_DISPARITY > ((D_MAX / 2) - 1)) ? --oldState : ++oldState;

(oldState < D_MIN) ? oldState = D_MIN : (oldState > D_MAX) ? oldState = D_MAX :

return(oldState);

} /* end RandomNewState */

void ReadImage(theImage, fileName)
unsigned char theImage[ROWS][COLS];
String fileName;

{

int row, col;
FILE #*theFile;

theFile = fopen((char #»)fileName, "r");

if (theFile == NULL)
printf(“Error opening file %s\n", fileName);

for (row = 0; row < ROWS; row++)

for (col = 0; col < COLS; col++)
theImage[row][col] = getc(theFile);
fclose(theFile);

} /% end ReadImage /

void CreateGrayScaleMap(disparities)
int disparities[ROWS][COLS];

{

int row, col;

FILE #theFile;

theFile = fopen(“STEREO_RESULTS", "®&");
for (row = 0; row < ROWS; row++)

for (col = 0; col < COLS; col++)
putc((255 / D_MAX) * disparities[row][col], theFile);
fclose(theFile);

} /* end CreateGrayScaleMap */
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int RandomizeMap(theMap)
int theMap[STEPSIZE][COLS];
{

int i, j;

for (i = 0; i < STEPSIZE; i++)
for (j = 0; j < COLS; j++)
theMap[i][j] = RAEDOM_DISPARITY;

} /# end RandomizeMap */

/* This is the function that each worker gets. The function is somewhat
long but this was done to limit shared memory and numbers of calls to
make. There are several special cases that must be dealt with. These
are areas where a point does not have 8 neighbors, such as the top row,
side column, bottom row, and topLeft and bottomLeft points in the

block */

int ComputeDisparities(workerNumber)
int workerNumber;

{

unsigned char leftImage [STEPSIZE][COLS], rightImage [STEPSIZE][COLS];
int disparities[STEPSIZE][COLS];

int tempDisparities[STEPSIZE][COLS];
double temperature;

int i, m, n, j, k;

int counter;

double currentTemp = START_TEMP;

int row, col, newState, oldState;

int oldEnergy, newEnergy, deltaEnergy;

/* randomize my local disparity map */
RandomizeMap(disparities);
/% read in my chunk of the images */

for (i = 0; i < STEPSIZE; i++)
in(vorkerNumber, i, ? leftImage[il:n, ? rightImage[il:m);

out("done in process");
/% start the processing */

vhile(currentTemp >= EED_TEMP)
{

for (counter = 0; counter < LOOPS; counter++)

{
/% compute the top left energy */

newState = RandomNewState(disparities[0][0]);
oldState = disparities[01[0];

oldEnergy = ((abs(disparities[0][1] - oldState) +
abs(disparities[1][0] - oldState) +




abs(disparities[1][1] - oldState)) = LAMBDA) +
abs(leftImage[0][0] - rightImage[0][oldState]);
newEnergy = ((abs(disparities[0][1] - newState) +
abs(disparities[1]1[0] - newState) +
abs(disparities[1][1] - newState)) * LAMBDA) +
abs(leftImage[0][0] - rightImage[0][newStatel);

deltaEnergy = newEnergy - oldEnergy;

if (deltaEnergy <= 0)

tempDisparities[0][0] = newState;

else if (RANDOM_PROBABILITY < exp({(double)-deltaEnergy/currentTemp))
tempDisparities[0][0] = newState;

else tempDisparities{0][0] = disparities[0][0];

/* compute the bottom left energy *»/

newState = RandomNewState(disparities[STEPSIZE-1][0]);

oldState = disparities[STEPSIZE-1][0];

oldEnergy = ((abs(disparities[STEPSIZE-1][1] - oldState) +
abs(disparities[STEPSIZE-2][0] - oldState) +
abs(disparities[STEPSIZE-2][1] - oldState)) » LAMBDA) +
abs(leftImage [STEPSIZE-1]{0] - rightImage[STEPSIZE-1] [oldStatel);
nevEnergy = ((abs(disparities[STEPSIZE-1][1] - newState) +
abs(disparities[STEPSIZE-2][0] - newState) +

abs(disparities [STEPSIZE-2][1] - newState)) » LAMBDA) +

abs (leftImage[[STEPSIZE-1]1[0] - rightImage([STEPSIZE-1] [newState]);

deltaEnergy = newEnergy - oldEnergy;

if (deltaEnergy <= 0)

tempDisparities [STEPSIZE-1][0] = newState;

else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/currentTemp))
tempDisparities [STEPSIZE-1][0] = newState;

else tempDisparities[STEPSIZE-1][0] = disparities[STEPSIZE-1][0];

/* compute left side energy */

for (row = 1; row < STEPSIZE-2; row++)

{

newState = RandomNewState(disparities[row][0]);
oldState = disparities{row][0];

oldEnergy = ((abs(disparities[row-1]1[0] - oldState) +
abs(disparities[row-1]{1] - oldState) +
abs(disparities[rov]{1] - oldState) +
abs(disparities[row+1][1] - oldState) +
abs(disparities[row+1][0] - oldState)) » LAMBDA) +
abs(leftImage[row] [0] - rightImage[row] [o1dState]);

newEnergy = ((abs(disparities[row-1]1[0] - newState) +
abas(disparities[row-1][1] - newState) +
abs(disparities[row][1] - newState) +
abs(disparities[row+1][1] - newState) +
abs(disparities[row+1][0] - newState)) * LAMBDA) +
abs(leftImage[row] [0] - rightImage[row] [newStatel);

deltaEnergy = newEnergy - oldEnergy;
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if (deltaEnergy <= 0)

tempDisparities{row] [0] = newState;

else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/currentTemp))
tempDisparities[row] [0] = newState;

else tempDisparities[row][0] = disparities[row][0];

}

/% compute top row energy */

for (col = 1; col < COLS - D_MAX; col++)

{

newState = RandomNewState(disparities[0][coll);

oldState = disparities[0][coll;

oldEnergy = ((abs(disparities[0][col-1] -~ oldState) +
abs(disparities{1][col-1] - oldState) +

abs(disparities{1][col] - oldState) +

abs(disparities[1] [col+1] - oldState) +

abs(disparities[0] [col+1] - oldState)) ¥ LAMBDA) +

abs(leftImage[0][col] - rightImage[0][coltoldState]);

newEnergy = ((abs(disparities[0][col-1] - newState) +
abs(disparities[1] [col-1] - newState) +
abs(disparities[1] [col]l - newStdte) +
abs(disparities[1] [col+1] - newState) +
abs(disparities[0][col+1] - newState)) * LAMBDA) +
abs(leftImage[0][col] - rightImage[0][coltnewStatel);

deltaEnergy = newEnergy - oldEnergy;

if (deltaEnergy <= 0)

tempDisparities[0] [col]l = newState;

else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/currentTemp))
tempDisparities[0][col] = newState;

else tempDisparities[0][col] = disparities[0][coll;

}
/* compute bottom row energy */

for (col = 1; col < COLS - D_MAX; col++)

{

newState = RandomNewState(disparities[STEPSIZE-1]{coll);

oldState = disparities[STEPSIZE-1][col];

oldEnergy = ((abs(disparities[STEPSIZE-1][col-1] - oldState) +
abs(disparities[STEPSIZE-2] [col-1] - oldState) +

abs(disparities[STEPSIZE-2][col] - oldState) +

abs(disparities[STEPSIZE~2][col+1] - oldState) +

abs(disparities[STEPSIZE-1][col+1] - oldState)) * LAMBDA) +

abs(leftImage [STEPSIZE-1] [col]l - rightImage[STEPSIZE-1][col+oldState]);

newEnergy = ((abs(disparities[STEPSIZE-1][col-1] - newState) +
abs (disparities [STEPSIZE-2][col~1] - newState) +
abs(disparities [STEPSIZE-2][col] - newState) +
abs(disparities[STEPSIZE-2][col+1] - newState) +
abs(disparities[STEPSIZE-1] [col+1] - newState)) *= LAMBDA) +
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abs(leftImage [STEPSIZE-1] [col] - rightImage[STEPSIZE-1][col+newState]);

deltaEnergy = newEnergy - oldEnergy;

if (deltaEnergy <= 0)

tempDisparities[STEPSIZE-1][col] = newState;

else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/currentTemp))
tempDisparities[STEPSIZE-1]1{col] = nevState;

else tempDisparities[STEPSIZE-1][col] = disparities[STEPSIZE-1]([col];

}

/% compute the main grid energy s/

for (row = 1; row < STEPSIZE-1; row++)

for (col = 1; col < COLS - D_MAX; col++)

{

newState = RandomBewState(disparities[rowl[coll);

oldState = disparities[row)[col];
oldEnergy = ((abs(disparities[row-1][col-1] - oldState) +
abs(disparities[row-1][col] - oldState) +
abs(disparities[row-1][col+1] - oldState) +
abs(disparities[row] [col-1] - oldState) +
abs(disparities[row] [col+1] - oldState) +
abs(disparities[row+i][col-1] - 0ldState) +
abs(disparities[row+1] [col] - oldState) +
abs(disparities[row+1][col+1] - oldState)) » LAMBDA) +
abs(leftImage[row][col] - rightImage[row][col+oldStatel);

newEnergy = ((abs(disparities[row-1][col-1] - newState) +
abs(disparities[row-1][col] - newState) +
abs(disparities[row-1] [col+1] - newState) +
abs(disparities[row] [col-1] - newState) +
abs(disparities[row][col+1] - newState) +
abs(disparities[row+1][col-1] - newState) +
abs(disparities[row+1][col] - newState) +
abs(disparities[row+1][col+1] - newState)) s LAMBDA) +
abs(leftImage[row] [col] - rightImage[row][col+newStatel);

deltaEnergy = newEnergy - oldEnergy;

if (deltaEnergy <= 0)

tempDisparities[row][col] = newState;

else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/currentTemp))
tempDisparities[row][col] = newState;

else tempDisparities[row] [col] = disparities{rowl[col]l;

}

/* move the temp disparities into the main array */
for (j = 0; j < STEPSIZE; j++)

for (k = 0; k < COLS; k++)

disparities[jl[k] = tempDisparities[j][x];

}
currentTemp -= (currentTemp & TEMP_REDUCTION);
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}
/% output results #*/

for (j = 0; j < STEPSIZE; j++)
out (vorkerNumber, j, disparities[j]:COLS);

} /* end ComputeDisparities */

real_main(argc, argv)

int argc;
char #»argv;
{

unsigned char leftImage[ROWS][COLS], rightImage[ROWS] [COLS];
int disparities[ROWS][COLS];

int result[COLS];

int i, j, count;

int workerID, row, cols;

struct timeval tpl, tp2;

struct timezone tzpl, tzp2;

printf("Executable = %s\n", argv[0]);
printf("Rows = %d, Cols = %d\n", ROWS, COLS);
printf("Workers = %d\n\n", WORKERS);

/* set the random seed to make sure we get different results each time */

gettimeofday(gtpl, ktzpl);
srand(tpl.tv_sec);

»
ReadImage(rightImage, RIGHT_IMAGE_NAME);
ReadImage(leftImage, LEFT_IMAGE_NAME);

start_timer();
timer_split("Start");

/* start up the workers */

for (i = 0; i < WORKERS; i++)
eval (ComputeDisparities(i));

timer_split ("Workers started");

/* out the data to tuplespace for the workers to consume %/

count = 0;

for (i = 0; i < WORKERS; i++)

for (j = 0; j < STEPSIZE; j++)

{

out(i, j, leftImage[count]:COLS, rightImage[count]:COLS);
++count;

}




timer_split(“Data outed");

for (i=0; i< WORKERS; i++)
in("done in process");

timer_split("workers ined data");
/* collect results from the workers s/
for (i = 0; i < ROWS; i++)

{

in(? workerlD, ? row, ? result:cols);

for (j = 0; j < COLS; j++)

disparities[(workerID » STEPSIZE)+row][j] = result[j]l;

}

timer_split ("Results Collected");

/% create a visual representation of the disparity map #*/
CreateGrayScaleMap(disparities);

print_times();

} /* end real_main s/
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C Solaris Threads Stereo Matching
rithm

/*
Parallel stereo matching algorithm based on simulated annrealing.

Concept attributable to Stephen Barnard, "A Stochastic Approach to
Stereo Vision" Readins in Computer Vision, Addison-Wesley, New York,
1987

Author: Dale R. Shires
Revision Date: 5/18/94
Notes:

This code has been written for parallel processing with Solaris threads.
Appropriate source level annotations to the code have been made.

See the article for more details on the Monte-Carlo search method.
Limited error checking is employed.

The procedure requires two files, one named LeftImage and one
named RightImage to be present in the directory. This implementation
only uses 2°n image sizes and the rows and columns must be the same.

The program currently does not output the actual disparity values.
Rather, it outputs a gray scale map representing these values.
The resultant map name is STEREO_RESULTS

*/

#include <stdio.h>
#include <sys/time.h>
#include <math.h>
#include <thread.h>
#include <synch.h>
#include <errno.h>

#define ROWS 256 /# the number of rows in the image */

#define COLS 256 /* the number of columns in the image */

#define D_MAX 6 /% maximum horizontal disparity */

#define D_MIE O /# minimum horizontal disparity »/

#define LAMBDA 5 /+ the lambda weighting factor */

#define WORKERS 8 /#* number of workers to use %/

#define LEFT_IMAGE_NAME "LeftImage'

#define RIGHT_IMAGE_NAME "RightImage"

#define START_TEMP 100.0 /* starting temperature of the algorithm %/
#define END_TEMP 1.0 /* ending temperature of the algorithm */
#define TEMP_REDUCTION 0.1 /# reduce temp this much after loop */
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#define
#define
#define
#define

typedef

unsigned char leftImage[ROWS][COLS], rightImage[ROWS][COLS];
int disparities[ROWS][COLS], tempDisparities[ROWS][COLS];

LOOPS 10 /% number of loops per temperature s/
RANDCM_DISPARITY (rand() % D_MAX)
RANDOM_PROBABILITY (rand() ¥% 32767 / 32767.0)
STEPSIZE (ROWS / WORKERS)

char String[255];

int RandomNewState(oldState)
int oldState;

{

(RAEDOM_

(0ldState < D_MIN) ? oldState = D_MIN :

DISPARITY > ((D_MAX / 2) - 1)) 7 --oldState

return(oldState);

} /#* end RandomNewState */

void WriteImage(theImage, fileName)
unsigned char theImage[ROWS][COLS];
String fileName;

{

int row, col;
FILE »*theFile;

theFile

= fopen((char *)file¥ame, "u");

if (theFile == NULL)
printf("Error opening file %s\n", fileName);

for (row = 0; row < ROWS; row++)
for (col = 0; col < COLS; col++)
putc(theImage[row][col], theFile);

fclose(theFile);

} /* end WriteImage */

void ReadImage(thelmage, fileX¥ame)
unsigned char thelmage[ROWS] [COLS];
String fileName;

{

int row, col;
FILE *theFile;

theFile

= fopen((char #)file¥ame, "r");
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if (theFile == NULL)
printf("Error opening file %s\n", fileName);

for (row = 0; row < ROWS; row++)
for (col = 0; col < COLS; col++)
theImage[row][col] = getc(theFile);

fclose(theFile);

} /* end ReadImage */

void CreateGrayScaleMap(disparities)
int disparities[ROWS][COLS];

{

int row, col;

FILE »theFile;

theFile = fopen("STEREO_RESULTS", "w");

for (row = 0; row < ROWS; row++)
for (col = 0; col < COLS; col++)

putc((255 / D_MAX) * disparities[row][col], theFile);

fclose(theFile);

} /* end CreateGrayScaleMap */

int RandomizeMap(theMap)

int theMap[ROWS][COLS];

{

int i, j;

for (i = 0; i < ROWS; i++)

for (j = 0; j < COLS; j++)
theMap[i] [j] = RANDOM_DISPARITY;

} /#* end RandomizeMap */

/* This is the function that each worker gets.

The function is somewhat

long but this was done to limit shared memory and numbers of calls to

make. There are several special cases that must be dealt with.

These

are areas where a point_does not have 8 neighbors, such as the top row,
side column, bottom row, and topLeft and bottomLeft points in the

block */

void ComputeDisparities(workerNumber)
int workerNumber;

{

double temperature;

int i;

int n, m;
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int j, k;

int counter;

double currentTemp = START_TEMP;
int row, col, newState, 0ldState;
int oldEnergy, newEnergy;

int deltaEnergy;

int startRow, stopRow;

int theWorker;

struct timeval tp;

struct timezone tzp;

/* set the worker number =/
theWorker = workerJumber;
/% determine start and stop positions for this worker */

startRow = theWorker * STEPSIZE;
stopRow = startRow + STEPSIZE;

gettimeofday(ftp, &tzp);
printf("Start %d %1d\n", theWorker, tp.tv_sec);

/% start the processing »/

vhile(currentTemp >= END_TEMP)
{
for (counter = O; counter < LOOPS; counter++)

{
/* compute the top left energy */

newState = Random¥ewState(disparities[startRow][0]);

oldState = disparities{startRow][0];

oldEnergy = ((abs(disparities[startRow][1] - oldState) +
abs(disparities[startRow+1] [0] - oldState) +
abs(disparities[startRov+1][1] ~ oldState)) = LAMBDA) +
abs(leftImage[startRow][0] - rightImage[startRow][oldState]);

newEnergy = ((abs(disparities[startRow][1] - newState) +
abs(disparities[startRow+1][0] - newState) +
abs(disparities[startRow+1][1] - newState)) * LAMBDA) +
abs(leftImage[startRow][0] - rightImage[startRow][newState]);

deltaEnergy = newEnergy - oldEnergy;
if (deltaEnergy <= 0)
tempDisparities[startRow] [0] = newState;

else if (RANDOM_PROBABILITY < exp{((double)-deltaEnergy/currentTemp))

tempDisparities[startRow] [0] = newState;
else tempDisparities[startRow][0] = disparities[startRow][0];

/* compute the bottom left energy */
newState = RandomNewState(disparities[stopRow-11[01);

oldState = disparities[stopRow-1][0];
oldEnergy = ((abs(disparities[stopRow-1][1] - oldState) +
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abs(disparities[stopRow-2]1[0] - oldState) +

abs(disparities[stopRow-2][1] - oldState)) * LAMBDA) +

abs (leftImage[stopRow-1]1[0] - rightImage[stopRow-1][oldState]);
newEnergy = ((abs(disparities[stopRow-1]1[1] - newState) +

abs(disparities[stopRow-2]1[0] - newState) +

abs(disparities[stopRow-2]1[1] - newState)) * LAMBDA) +

abs (leftImage[stopRow-1]1[0] - rightImage[stopRow-1][newState]);

deltaEnergy = newEnergy - oldEnergy;
if (deltaEnergy <= 0)
tempDisparities[stopRow] [0] = newState;
else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/currentTemp))
tempDisparities[stopRow-1][0] = newState;
else tempDisparities[stopRow-11[0] = disparities[stopRow-11[0];

/* compute left side energy */

for (row = 1; row < stopRow-2; row++)

{

newState = RandomBewState(disparities{row][0]);

oldState = disparities[row][0];

oldEnergy = ((abs(disparities[row-1]1[0] - oldState) +
abs(disparities[row-1][1] - oldState) +
abs(disparities{row][1] - oldState) +
abs(disparities[row+1]1[1] ~ oldState) +
abs(disparities[row+1]1[0] - oldState)) * LAMBDA) +
abs(leftImage[row] [0] - rightImage[row] [oldStatel);

newEnergy = ((abs(disparities[row-11[0] - newState) +
abs(disparities[row-11[1] - newState) +
» abs(disparities{row][1] - newState) +
abs(disparities[row+1][1] - newState) +
abs(disparities[row+1][0] - newState)) # LAMBDA) +
abs(leftImage[row][0] - rightImage[row] [newStatel);

deltaEnergy = newEnergy - oldEnergy;

if (deltaEnergy <= 0)
tompDisparities[row][0] = newState;

else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/currentTemp))
tempDisparities[row][0] = newState;

else tempDisparities[row][0] = disparities[row]{0];

}

/* compute top row energy */

for (col = 1; col < COLS - D_MAX; col++)

{

newState = RandomNewState(disparities[startRow][coll);

oldState = disparities[startRow][coll;

oldEnergy = ((abs(disparities[startRow][col-1] - oldState) +
abs(disparities[startRow + 1]1[col-1] - oldState) +

abs(disparities[startRow + 1J[col] ~ oldState) +

abs(disparities[startRow + 1][col+1] - oldState) +

abs(disparities[startRow] [col+1] - oldState)) #* LAMBDA) +
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abs(leftImage[startRow] [col]l - rightImage[startRow] [col+oldStatel);

newEnergy = ((abs(disparities[startRow][col-1] - newState) +
abs(disparities[startRow + 1][col-1] - newState) +
abs(disparities[startRow + 1][col] - newState) +
abs(disparities[startRow + 1] [col+1] - newState) +
abs(disparities[startRow] [col+1] - newState)) & LAMBDA) +
abs(leftImage[startRow] [col] - rightImage[startRow] [col+newState]);

deltaEnergy = newEnergy - oldEnergy;

if (deltaEnergy <= 0)

tempDisparities[startRow] [col] = newState;

else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/currentTemp))
tempDisparities[startRow] [col] = newState;

else tempDisparities[startRow][col] = disparities[startRow][col];

}

/* compute bottom row energy */

for (col = 1; col < COLS - D_MAX; col++)

{

newState = RandomNewState(disparities[stopRow-1)[col]);

oldState = disparities[stopRow-1][col];

oldEnergy = ((abs(disparities[stopRow-1][col-1] - oldState) +
abs(disparities[stopRow-2][col-1] - oldState) +

abs(disparities[stopRow-2][col] - oldState) +

abs(disparities[stopRow-2] [col+1] - oldState) +

abs(disparities[stopRow-11[col+1] - oldState)) = LAMBDA) +

abs(leftImage[stopRow-1][coel] - rightImage[stopRow-1][col+oldState]);

newEnergy = ((abs(disparities[stopRow-1][col-1] - newState) +
abs(disparities{stopRow-2] [col-1] -~ newState) +
abs(disparities[stopRow-2][col] - newState) +
abs(disparities[stopRow~-2][col+1] - newState) +
abs(disparities[stopRow-1] [col+1] - newState)) * LAMBDA) +
abs(leftImage[stopRow-1][cel] - rightImage[stopRow-1] [col+newState]);

deltaEnergy = nevEnergy - oldEnergy;

if (deltaEnergy <= 0)

tempDisparities[stopRow-1] [col] = newState;

else if (RANDOM_PROBABILITY < exp((double)-deltaEnergy/currentTemp))
tempDisparities[stopRow-1][col] = newState;

else tempDisparities[stopRow-1}[col] = disparities[stopRow-1][col];

}
/% compute the main grid energy #*/

for (row = startRow+l; row < stopRow-1; row++)

for (col = 1; col < COLS = D_MAX; col++)

{

nevState = RandomNewState(disparities[row][col]);
oldState = disparities[row][col];

oldEnergy = ((abs(disparitjes[row-1][col~1] - oldState) +
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abs(disparities[row-1][col] - oldState) +
abs(disparities[row-1][col+1] - oldState) +
abs(disparities[row][col-1] - oldState) +
abs(disparities[row] [col+1] - oldState) +
abs(disparities[row+1][col-1] - oldState) +
abs(disparities[row+i][col] - oldState) +
abs(disparities[row+i] [col+1] - oldState)) * LAMBDA) +
abs(1leftImagelrowl{col] - rightImage[row][col+oldStatel);

nevEnergy = ((abs(disparities[row-1][col-1] - newState) +
abs(disparities[row-1][col] - newState) +
abs(disparities[row-1][col+1] - newState) +
abs(disparities[row] [col-1] - newState) +
abs(disparities[row] [col+1] ~ newState) +
abs(disparities[row+1][col-1] - newState) +
abs(disparities[row+1][col] - newState) +
abs(disparities[row+1] [col+1] - newState)) * LAMBDA) +
abs(leftImagelrow] [col] - rightImage[row][col+newState]);

deltaEnergy = newEnergy - oldEnergy;

if (deltaEnergy <= 0)

tempDisparities[row] [col] = newState;

else if (RANDOM_PROBABILITY < exp({double)-deltaEnergy/currentTemp))
tempDisparities[row] [col] = newState;

else tempDisparities[row][coll = disparities[row][coll;

}

/* move the temp disparities into the main array =/
for (j = startRow; j < stopRow; j++)

for (k = 0; k < COLS; k++)

disparities[j][k] = tempDisparities[jl[x];

}

currentTemp -= (currentTemp * TEMP_REDUCTIORN);

}

gettimeofday(&tp, &tzp);
printf("Stop %d %1d\n", theWorker, tp.tv_sec);

} /% end ComputeDisparities =/

int main(argc, argv)

int argc;
char #xargv;
{

int i, j, count;

int workerlID, row, cols;

struct timeval tpi, tp2, tp3;
struct timezone tzpl, tzp2, tzp3;
void #stat;

thread_t thr;




printf(“Executable = %s\n", argv[0]);
printf("“Rows = %d, Cols = %d\n\n", ROWS, COLS);

RandomizeMap(disparities);

gettimeofday(&tpl, &tzpl);
srand(tpl.tv_sec);

ReadImage(rightImage, RIGHT _IMAGE_NAME);
ReadImage(leftImage, LEFT_IMAGE_NAME);
gettimeofday(&tpl, &tzpl);

for (workerID = O; workerID < WORKERS; workerlD++)
thr_create(NULL, O, ComputeDisparities, workerID, THR_NEW_LWP, NULL);

gettimeofday(&tp2, &tzp2);

for (workerID = O; workerID < WORKERS; workerID++)
thr_join(0, &thr, &stat);

gettimeofday(2tp3, &tzp3);

printf(“Start %1d, %1d\n", tpl.tv_sec, tpl.tv_usec);
printf("Threads created %ld, %1d\n", tp2.tv_sec, tp2.tv_usec);
printf(“Done %14, %1d\n", tp3.tv_sec, tp3.tv_usec);

CreateGrayScaleMap(disparities);

} /% end real_main %/
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NO. OF

COPIES ORGANIZATION

2

ADMINISTRATOR DTIC
ATTN DTIC DDA

CAMERON STATION
ALEXANDRIA VA 22304-6145
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